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1. Introduction

By the theory of complex multiplication of elliptic curves and class field theory, it is
now widely known that the value of the modular j-invariant denoted by j(z) for z € H
the upper half plane at the point N _‘“'T‘/Td for —d a negative fundamental discriminant
and N a positive integer generates the ring class field of conductor N over Q(v/—d), an
object of great concern in algebraic number theory, and its Galois conjugates over QQ are
exactly j(7g), where 7¢ is the unique imaginary quadratic point lying in H defined by a
positive definite binary quadratic form @ = Q(X,Y) via Q(7,1) = 0, as [(Q)] ranges over
the representatives of Qnz24/SLo(Z), where Qpnz4 denotes the set of primitive positive
definite integral binary quadratic forms of discriminant —N?2d, i.e.,

Onzg = {aX? +bXY +cY?|a,b,c € Z, a> 0, b* — dac = —N?d} .

These facts provide ones with a numerically feasible way to compute a defining polyno-
mial Hy n(z) of the ring class field of conductor N over Q(v/—d), that is,

Han(z) = II (z = j(1Q)),

[Q]GQde/SLQ(Z)

called the ring class polynomial of conductor N associated with j(z) and Q(v/—d),
and such an interesting application sequentially and considerably brings the study of
properties of such a particular family of ring class polynomials to ones’ attention.

Implementing the aforementioned application, Berwick [1], and Ford and McKay
[14, p. 349] respectively computed certain resultants and discriminants associated with
Hg 1 (z) whose splitting field over Q(v/—d) is the so-called Hilbert class field. Their com-
putations show that these rational integers are all incredibly highly factorizable, and
their prime factors are bounded by a relatively very small quantity depending on d.
These lead ones to suspect that the prime decompositions of resultant and discriminant
associated with Hg 1 (z) may possess certain describable patterns. Shortly after Ford and
McKay’s discoveries, these patterns were first formulated by Gross and Zagier [11], who
remarkably established explicit formulas for the prime decomposition of the resultant of
Hy, 1(x) and Hy, 1(z) with dq,ds coprime, and that of the discriminant of Hy 1 (x) with
d a prime congruent to 3 modulo 4. As an implication, these formulas follow that the
prime factors of the these rational integers are respectively no greater than dlzlﬂ and d,
and thus, explain Berwick et al’s observations.

Gross and Zagier’s seminal work later inspired a number of sequential research on
the topic. In [7], generalizing Gross and Zagier’s algebraic proof of their formula for
resultant, Dorman obtains an equivalent algebraic formulation, and in recent work [17],
Lauter and Viray extend it to the case for arbitrary ring class polynomials Hy, n, (z) and
Hg, n,(z) with N2d; # N3ds. Also, Dorman [8] extended Gross and Zagier’s formula for
the discriminant of Hy 1 () to the case that —d is an arbitrary negative fundamental dis-
criminant, and Hayashi further extended it to the case for arbitrary ring class polynomial
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Hy n(z) in his thesis [12]. Recently, using a fundamentally different approach, we [24]
also establish an equivalent formulation for the prime decomposition of the discriminant
of Hy n(x), and consequently, re-prove Dorman’s formula.

On the other hand, as a member of the family of Thompson series, a family of
uniformizers of modular curves for Fuchsian groups associated with the monstrous moon-
shine, it is commonly believed that many properties of the modular j-invariant j(z) also
hold for other Thompson series. For instance, similar to the algebraic property of j(z)
stated at the beginning, it was proved [6] by Chen and Yui that the value of a Thompson
series T'(7) of level N at the point _d%\/:’l for —d a negative fundamental discrimi-
nant generates the ring class field of conductor N over Q(v/—d) with Galois conjugates
exactly T'(rg) as [@Q] ranges over Qq(N)/T'o(N), where Qq4(N) denotes the set of primi-
tive positive definite binary quadratic form aX? 4+ bXY + cY? of discriminant —d with
ged(a, N) =1, ie.,

Qu(N) = {aX?® +bXY +cY? a,b,c € Z, a> 0, b* — dac = —d, ged(a, N) = 1},

and this leads to another feasible way of computing ring class polynomials of conductor
N associated with Q(v/—d) over Q. Inspired by Berwick et al’s work, like one may
naturally look into the resultants and discriminants of these polynomials, Chen and Yui
did numerically compute a large number of examples, and found that similar to what
we have just seen on j(z), the numbers are also all highly factorizable. For example,
letting HIN(.’E) denote the ring class polynomial of conductor IV associated with the

Thompson series j3;(z) for Fricke group T'o(N)T = <F0(N)7wN = (;% _1/0\/N)>
and Q(v—d), i.e.,

Hiy(z) = 11 (z - % (), (1.1)

[Ql€Qa(N)/To(N)

their computations showed that
Hi (z) =2+ 224z + 448 and Hj,(z) = 2" — 5282° — 90242” — 5120z — 1728,

where

- + 7%q | I ( ) with ¢ = exp(27iT)
_ 7n _on ’

T q S \1l—q S\l

and consequently, the resultant

|result (Hy 7 (x), Hy -(x))| = 2'%3°11747'83"'131", (1.2)

and the discriminant
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|disc (Hy (z))| = 2°3°7". (1.3)

Based on careful inspection on their abundant numerical data, Chen and Yui predicted
that prime factorization formulas analogous to Gross and Zagier’s may also exist for
Thompson series of level N, and accordingly conjectured that the prime factors involved
are bounded by a certain quantity depending on d and N. For example, they made the
following conjecture.

Conjecture 1.1. Let p be a prime such that To(p)™ is of genus zero. Let result (H;1 (@),

H+

& p(x)) denote the resultant of the ring class polynomials H} »(@) and Hy »(@), and

let disc (Hip(x)) denote the discriminant of the ring class polynomial Hip(x). Then

(1) the prime factors of result (H(Z’p(as),H;;p(x)) with (d1,d2) = 1 are bounded by
p’dids

(2) the prime factors of disc (HIP($)> are bounded by dp.

Remark 1.2. By the Riemann—Hurwitz formula, there are only finitely many primes p
for which T'y(p)™ are of genus zero, and these are

2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71,

whose Thompson series j;‘ (1) are correspondingly uniformizers of the modular curves of
To(p)* with a simple pole at the cusp [icc] and can be explicitly found in [5, Tables 3
and 4a] or [13, Table 3].

In recent work [21], we realize Chen and Yui’s prediction on Thompson series for I'g(p)
for p prime. In the present work, we treat the case for Thompson series for I'g(p)™, and
ultimately validate Conjecture 1.1. To this end, we shall establish explicit prime factor-
ization formulas for resultants and discriminants. The former case is now summarized in
the following theorem.

Theorem 1.3. Let p be a prime such that To(p)™ is of genus zero. Let —dy, —dy be two

coprime negative fundamental discriminants and let xq4,(+) = (fdi

) be the associated
quadratic character. Let H;:p(a:) be the ring class polynomial of conductor p be defined
as in (1.1). Then one has that

log ’result (H;’l »

(2), 1, , @) = > elogt,

£ prime

where
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(p— 2 —2x4,(p) — Xa,(P)) S Ry (d1d2 - 502)

= 2 4
r2<didsy
dldg — CEQ
+ C(p,dy, d2) Z Fi (4p )
r2<d1d>
. Fpo (B0%=2)  if ey,
>
2 (p®d1da—2?) L)
r2<p2dids le,p,2 (f) fo =D,
and
C(p,dy,d2) =
(1 +sgn(xd, (;P) + Xd>(P) = 1)) (L + xa, () (1 + Xao (P))(2 — Xas (P) (2 — Xd2(P))

4

Here sgn(r) denotes the sign function defined to be 1 if r > 0, and —1 otherwise,

1
Fie(m) = o > i, (m),

r>1
ee denotes the ramification degree of £ in Q(v/—dy), and

A er (M) =
1 4 ordy(m) if xa, (@) =1, ¢ # 1,
2 if xa, (@) =1, ¢ =1,

L1 4 (=) am) i yg (q) = =1, ¢ # 1,

() 11

q‘ pr“;éeé 2 Zf q|d1; (_dla _m)q =14 # l7

qim, q
1 Zf Q|d1; (_dla _m>q = 1) q= l: Ordq(m) S 27
0 otherwise,

where

0 if either N ¢ Z, or £ {pdy and ordg(N) =1 (mod 2),
e(N)=1<2 if N€Z and/l|dy,

1 otherwise,

and (—dy, —m), denotes the local Hilbert symbol at the place q.
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Remark 1.4. We remark that in the definition of ;¢ ,.(m), the product is defined to be
over all prime factors of m not equal to £. So when [ = £, the second case is by default
automatically omitted.

Remark 1.5. It is noteworthy that what we compute in the present work are different
from those in [9] by Gross, Kohnen and Zagier, in which they indeed compute and
derive formulas for the prime factorizations of the resultants of class polynomials Hctp(x)
associated with jp+ (1) and Heegner points, i.e.,

Hi@= I (-if(),

[QI€Qa,p/To(p)

where
Qup = {aX? + XY + cY? aX? +bXY +cY? € Qu, pla}.

Example 1.6. Take p =7, —d; = —3 and —dy = —4. By Theorem 1.3 and the definition
dldg—wz dldz—Iz T p2d1d27r
4 ’ 4p 4

of ¢y, one can see that ¢, # 0 only if ¢ divides 0 > for some z

such that either one is positive integral, or £ = p, and thus by the choices of p, —d; and
—ds, one first has that
log ’result (H;}(x), Hj}(a:)) ‘
=e¢glog2 + e3log3 + e7log 7+ e11log 11 + e13log 13 + eo3 log 23 + e37 log 37
+ e471og 47 + ¢61 log 61 + e73log 73 + eg3 log 83 + ¢131 log 131.

Using the formula for ¢y, one can compute and obtain that

€2 = 123 €3 = 67 e7 = 07 €11 = 2, €13 = Oa €23 = Oa

e37 =0, eir=1, e =0, e3=0, es3=1, ¢33 =1,
and thus, obtains
|result (Hy 7 (x), Hy ;(z))]| = 2'%3°11°47'83"131",
which coincides with (1.2).

Remark 1.7. Using the Magma code for Theorem 1.3 listed in Appendix, we have verified
that for the cases considered on page 316 of [6] by Chen and Yui, the prime factorizations
yielded by Theorem 1.3 all correspondingly match with those given in the table therein.
Note that there is a typo in their table on the case (p,di,d2) = (7,7,8) for which the
exponent of the prime factor 13 should be 14 instead of 4, and this can be checked by
directly computing the resultant of the class polynomials
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Hi (z) = 27 + 40462° — 647992° + 16442335z" + 148830712" + 1993700172 —
459506252 4 3°5°

and

Hy o (z) = a® — 732827 + 655872° + 10895362° + 1550626562 —
532869122 — 606126082 + 81920000z + 2'25°

given in the table on Page 300 of [6].
The following corollary of Theorem 1.3 affirms Conjecture 1.1 (1).

Corollary 1.8. Any prime factor of the resultant of Hdt p(x) and Hdt p(x) with p prime

and ged(dy,ds) =1 is less than TP%T“ZQ.

In what follows, we enunciate the formula for the prime factorization of the discrim-
inant of H;p(x) with ¢ = 3 (mod 4) a prime not equal to p, i.e., —¢ a fundamental
discriminant. See Theorem 3.11 for the general case.

Theorem 1.9. Let p > 3 be a prime such that To(p)T is of genus zero, and let ¢ = 3
(mod 4) be a prime not equal to p. Then

log |disc (H,,(z))] = > erlogd,

£ prime

where
ey = Z €l a,
[a]€Clq(p)
[a]#[Oq]
and

pg—1 00 2 2
4Aq — q(2AX + pBY )* — Y — 2Al
in=Y S Crom < q—q( pBY)? — (gp ) )

1=0 X,Y=—00 44q

pq—1

PN

1<j,k<p—1 =0
jk=—1 (mod p)

= 4Aqp — qp*(2AX + pBY )? — (qp*Y — 2(pCk — j + pl)A)?
X Z GZ a,j 3
o 4Aqp?

X, Y=—0
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the ideal class representatives a are chosen to be {A, BJF;/*_q} so that ged(A,pq) = 1, and

the function Gy n(m) is defined as follows (all the products involved are over primes
prescribed by the corresponding given assumption).

(i) For m <0, Ggqn(m) = 0. Note that this actually implies that ¢, 4’s are all finite
sums, and see also Remark 1.10.
(ii) For m =0 and n such that p|n and p*{n,

(a) if £ # p, Gean(0) =0,
(b) otherwise, Ggq,(0) = %, where hy denotes the class number of Q(v/—q)
divided by half of the number of the integral units of the field.
(iii) For m >0 and

(a) for £ #p,q,

Gé,a,n(m)
1 ord(m) ' ord,(m) .
=5 [T | 2 xa® | WalOmn) {37 xq(0)'g
tlpq J=0 Jj=1
1 if ordy(m) < —1,

q

X ordg (m Ordq(m)
(1 + (M> ) otherwise,

(b) fOT t=gq,
1 ord(m) ‘
Gran(m) = D) H Z Xq(t)’
ttepg \ J=0
_ ord, (m) ordq(m)
X Wa(ovman) <TrL/(]q> (Ordq(m) + 1) s
(c) for £ =p,
ord;(m)
1 W!(0,m,n
Gran(m) 5 Z Xq(t)’ %
tlpq Jj=0
1 if ordg(m) < —1,

X ordy (m) \ ordq(m)
(1 + (M) ) otherwise,

where
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(1) for p*|n,
Wa(s,m,n)
—Am —s . _
1+( ’ )p if ord,(m) =0,
ord, (m)
—s\J _gyordy(m)+1 .
o0 Y Gu@e) | - Ga@ )T ifordy(m) > 1,
j=2
o0
I+(p—1) Z Xq(p)"p™"* otherwise,
n=2

(2) for p|n and p*{n,

Wa(smm) = 1 4 (Aq (mgq + A(n/p)?) ) b,

p
(3) forptn,
Wa(s,m,n) =1,

Remark 1.10. Since Gy q (m) is defined to be 0 for m < 0, one can see that the innermost
sums of ¢, 4 are finite sums. More precisely, one can see that

4Aq — q(2AX + pBY)? — (qpY — 2Al)?
GZ,a,pl 4Aq

and

o, (4Aap — ap*2AX + pBY)? — (qp*Y — 2(pCk — j + pl) A)®
b 4Aqp?

contribute to ¢, only if
4Aq — q(2AX + pBY)? — (qpY — 241)* > 0
and
4Aqp — qp®(2AX + pBY)? — (qp”Y — 2(pCk — j + pl)A)* 2 0,
respectively. These induce bounds on Y’s as one correspondingly has that
(qpY — 2A1)* < 4Aq — q(2AX + pBY)? < 4Aq

and
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(@p®Y —2(pCk — j + pl)A)* < 4Aqp — qp*(2AX + pBY')* < 4Aqp,
and subsequently, bounds on X’s.

Remark 1.11. We refer the reader to Remark 3.8 for the reason why it is not necessary
to include all cases for (m,n) in Theorem 1.9.

Example 1.12. Take p = 7 and —d = —3. One can check that Clg(p) = {[O4], [a]} with
a= {31, %} By the definition of Gy q,,(m), one can tell that it does not vanish
only if ordg(m) > 0, ordg(md) > 0, or m = 0, and thus, one obtains by Theorem 1.9 that

log |disc (Hy ;(z))| = e2log 2 + e3log 3 + ¢71log 7,
where

er = Z G2,a,71 (;) +2 Z G2.a,j (%) + Z G2.a,j (%)

1=4,7,10,11,14,17 §=2,5 j=1,6

8
Y G ()
j=3,4

3
e3=Gs00(1)+ D Gaa, (49> ;

7=2,5

er=2 Y Gram(0)+ Y Gram(0).

1=3,18 1=6,15

Following the definition of Gy q (M), one can compute and show that

1
e2:6><0—i-2><2><54—2><1+2><2><1:87
es=14+2x1=3,

1

1
87:2X2X6+2X6:1,

and thus,
|disc (Hy ;(z))| = 2°3°7",
which coincides with (1.3).

Using Theorem 1.9, one can obtain Corollary 1.13 and partially confirm Conjecture 1.1
(2). See Corollary 3.12 for the general case.

Corollary 1.13. Any prime factor of the discriminant of H;:p(x) with p,q distinct odd
primes is less than pq.
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Before we proceed to the next section, we list some of the notation that shall be
frequently adopted in the remainder of this work and their definitions as follows.

o Qg the set of primitive positive definite integral binary quadratic forms of discrim-
inant —d with leading coefficient divisible by p, i.e.,

{aX? + bXY + cY?|aX? + bXY + cY? € Qq, pla},

e Qupp: the subset of quadratic forms aX? + bXY + c¢Y? of Q,, for which b = 3
(mod 2p) for some fixed 8 (mod 2p) such that —d = 5% (mod 4p), i.e.,

{aX? +bXY +cY?|aX? +bXY +¢cY? € Qup, b= (mod 2p)}

o hg: the class number of Q(v/—d) of fundamental discriminant —d < 0 divided by
half the size of its group of units, i.e.,

if d = 3,

Wl

hg = if d = 4,

N[

the class number of Q(v/—d) if d > 4,

o hg(p): the form class number of Q,4(p) modulo the group action of T'g(p), i.e., ha(p) =
1Qa(p)/To(p)l;

o T'g: the stabilizer subgroup of a quadratic form Q of I', i.e., g = {y € T'|Q - v = Q},

o ((s): the Riemann zeta function,

o (4(s): the Dedekind zeta function associated with Q(y/—d) of fundamental discrim-
inant —d < 0,

e Clg(p): the ring class group of conductor p of Q(v/—d) of fundamental discrimi-
nant —d < 0, i.e., the group generated by integral ideals of norm prime to p modulo
its subgroup generated by principal integral ideals of norm prime p.

Acknowledgment The author thanks Chao Qin for very useful discussion and in par-
ticular for his Magma code, and he would also like to thank the referee for his/her useful
comments and suggestions.

2. Proof of Theorem 1.3

This section is devoted to proving Theorem 1.3, and throughout this section, —dy, —d>
are assumed to be coprime negative fundamental discriminants, and —d; is assumed to
be odd, i.e., square-free, by symmetry. As the proof involves various concepts and results,
to avoid an unwieldy long exposition, we break the section into several subsections.
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2.1. Automorphic Green functions

By (1.1), it is clear that

2
result (H;l’p(a:), H('i';’p(ac)> ‘

=) S loglif (ra,) — i (rau)

[Q@1]€Qa4; (p)/To(p) [Q2]€Qud, (P)/To(p)

log

Jn(z1) — j;(22)|2 can be related to the
so-called automorphic Green functions as follows, whose proofs can be found in [9, Propo-
sition 1, p. 544] and [23].

where the corresponding harmonic function log

Lemma 2.1. Let gs(z1, 22) be the Green resolvent defined by

gs(21, 22) = —2Q 14+ M
s\l =2 st 2Im(z1)Im(z3) )’

where
Qs—1(t) = / (t + V/t? — 1cosh v) e
0

defined for Re(s) > 0 and t > 1. For p =1 or a prime, write

Gp,s(zlu Z2) = Z 95(2177 . 22)

~Y€To(p)

and let Ey(z,s) be the non-holomorphic Eisenstein series of weight 0 for T'o(p) defined
by

E,(z,5) = Z Im(y - 2)%, (2.1)

Y€l \To(p)
here Too = ( (1 1) 21, wiit
where co — O 1 y = . Trive

Define ¢(s) to be

Then one has that forp =1,
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ogli(er) = i) = lim { Gr(e1,2) + 4 (EaCenso) 4 BaCenns) = o) = 2 )},

™
(2.2)
and for p prime,
log|y) (1) — 5y (22)/*
= lim {Gp,m 22) + G (1, w0y - 22) (2.3)
4a . . Lo 1—pt 1 p2sHl
- 1-—2s <Ep(2178)+Ep(22,s)—<p sl_p—23+p ° l_p_zs (b(s) .

Then as an instant implication of (2.3), one has that

2
log ‘result (H;r1 ,p(x), H{Lp(p)) ’
= X S loglif(ra) = g (0P

[Q1]1€Qa, (p)/To(p) [Q2]€Qua, (P)/To(p)

= lim { > > Gp.s(101:7q.) (2.4)

s—1
[Q1]€Qa, (p)/To(p) [R2]€Qa, (P)/To(p)

+ Z Z Gp,s(TQu, wp - 7Q,)
[Q1]1€Qa, (p)/To(p) [Q2]€Quay (P)/To(p)

_ 47 (hdg (p) Z E'; (7'Q1 , s) + hg, (p) Z E; (TQ2 , S)

1—2s
[Q1]€Qa, (p)/To(p) [Q2]€Qa, (p)/To(p)
B 1— p—l 3 1— p—25+1
1-2s s
— ha, (p)ha, (p) (p = R = o(s) ] ¢

and thus, to compute the resultant is equivalent to evaluating the limit on the right hand

side of (2.4), which comprises three main components,

Z Z G;DaS(TQUTQz) (25)

[Q1]€Qa; (p)/To(p) [Q2]€Qa, (»)/To(p)

Z Z Gp,s(TQ,, Wy - 7Q,) (2.6)

[Q1]1€Qa, (P)/To(p) [Q2]€Qu4, (P)/To(p)

> E}(1q, ). (2.7)

[QI€Qa; (P)/To(p)

The treatment of the first two components (2.5) and (2.6) is closely related to the
following formulas due to Gross, Kohnen and Zagier [9].



30 D. Ye / Journal of Number Theory 253 (2023) 17-68

Lemma 2.2 (Gross, Kohnen and Zagier). Let p be 1 or a prime such that To(p)™ is of
genus zero and let —dy, —da be two coprime negative fundamental discriminants. Then
one has that

4
lim ( Z Z G1,5(10,,7Q,)
"7\ (Qu1€Cu, /SLa(Z) [Q2]€Cay /SLa(Z) ISL2(Z)Q,[1ST2(Z) . |
s 45 Cay (s) s 45 Cay(s) 6
Ar | hg,275d2 2% hg 275d22922%) _p.p — hyg hg,—
+ 71—( dg 1 4(28) + dl 2 4(28) dl d2¢(8) dl d27'('

- Z Z Fi (W) log ¢,

£ prime \x2<didsa

d1d27$2
4

where Fj ¢ ( ) is defined as in Theorem 1.3.

Moreover, for —d; such that xq4,(p) # —1, so that Qq, , is nonempty, one has that

4
ll—% ( Z Z T |Gp-,s (701, 7Q.)

r
[@11€Qua; .p/To(p) [Q2]€Qay »/To(p) Co(P)a: lITo(P)es

(1 +sgn(xd, (P) + x> (P) = 1)) (1 + xa, () (1 + xa,(P))

o 2(p+1)
X (hd22_sdi% id(lz(j; + hd12_8d2% id(zz(j)) - hd1 hdz ¢(8) - %))
_ (I +sgn(xa, (P) + Xap (P) = D) + Xa, (P)) (L + Xa, () (2 = X, (P)) (2 = Xa> (P))
4

X Z Z Fie (dldiip_ﬁ> log ¢

L prime \x2<dids

n (1 +sgn(xa, (p) + x> (p) — 1)) (1 + xa, () (1 + xa,(p))6ha, ha, (p — 1)
2(p+1)?

log p.

Proof. These follow from [9, Proposition 2, p. 531] specialized to m = 1 and N = p, [9,
Eq. (1)] and the fact that the spaces of cusp forms of weight 2 for T'o(p)™ of genus zero is
trivial. In particular, the reformulation of the logarithm of prime decomposition on the
right hand side follows from [17, Prop. 7.12]. O

In the following two subsections, we shall use Gross et al’s work and its extensions to
establish analogous formulas for the components (2.5) and (2.6), which ultimately aid
us in computing (2.4).
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2.2. Component (2.5)

In this subsection, we derive a formula for the “limit” of (2.5) as s goes to 1. We start
with the following lemma, which gives an interrelation between the component (2.5) and
the two of those averages considered in Lemma 2.2.

Lemma 2.3. Let the notation below be defined as before. Then for p prime, one has that
Z Z GZ%S(TQl ) TQz)
[Q@1]€Qa4; (p)/To(p) [Q2]€Qa, (P)/To(p)
=(p—1=Xa(P) — X, (P)) (2.8)

E E: 4

. G1 S(TQ17TQ2)
Lo (Z Lo (Z ’

[Q1]€Qu4, /SL2(Z) [Q2]€Qa, /SL2(Z) SL2(Z)q, |ISL2(Z) .|

4
To(P)e: [To(P)e.

+ |GP18(TQ177—Q2)'

[Q1]€Qa4, ,»/To(p) [R2]€Qay,p/T0(p)

Proof. It can be easily checked that Qg (p)/I'o(p) has no elliptic points for p > 2,

ie., Io(p)g = {xI} for any [Q] € Qq,(p)/To(p), and thus, [T'o(p)g| = 2 for [Q] €
Q4(p)/To(p). Then using the decomposition

Qa, = Qu,(p) U Qa, ps

one can first rewrite that

> > Gp,s(7Q:,7Q,)

[Q1]1€Qa, (p)/To(p) [Q2]€Qua, (p)/To(p)

4
= Z Z |GP,S(TQ177—Q2)

T T
Q1€ )/ To(r) (sl /Tt ITOP)@:lTo(P)s

4
= Z Z ‘GP,S(TQUTQz)

T T
(Q1edm /To(p) [@ale 2a/Tatpy 0PI To(P)a,

4
- Z Z ‘GP,S(TQUTQz)

T T
Q11 /To(s) (Qsleam/To(py 0PI To(P)gs

4
- Z Z ‘GP,S(TQMTQz)

T T
(Q11EDm/To(0) (QsleOmya/To(py 0P To(P)o

+ Z Z . ‘GP,S(TQMTQz)v

T T
(Q11EC o /To(0) (Qsle0ma/To(p) 0P Do (P

and sequentially by the definition of G, s(z1, 22) deduces that
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Z Z GP,S(TQUTQz)

[@1]€Qa4, (p)/To(p) [Q2]€ R4, () /To(p)

- Y A Y A Y e

T T
[Ql]egdl/ro(p)| o(p)al [Qz]EQdZ/FU(P)| olPesl | 5

- Z % Z % Z gS(TQ177'TQ2)

T T
[Q11€Qa;.»/To(p) o(p)al [Qz]egdZ/r(J(p)' olPasl 5,

- 2z 3 - | Y 9s(v 01 7)

T T
[Qz]Gde,p/Fo(p)| o(p)e| [Qllegdl/ro@)' o(P)es ~+ETo(p)

4
o 2 oo e e me:)
[@11€Qa, p/To(p) [Q2]€Qay p/To(p) " O/ @11IT 0N Q2

=5 —DI— I3+ 14, (2.9)

where I; denote four of those double sums in the second-to-the-last equality, respectively.
Now note that for any [@1], the double sum

Z ’ | Z gS(TQl”y'TQz)

r
[Q2}€Qd2/Fo(P)| 0(p)Q2 v€To(p)

is just twice the sum of g(7¢q,,22) over all imaginary quadratic points induced by Qg,,
and thus,

) 2
D SACE D DR

T
[Q2]egd2/ro<p>| 0(P)e: ~€To(p) (@2]€Qu, /SLa(Z)

X Z gs(Tle'Y'TQz)'

~€SL2(Z)
Therefore, one has that

L = Z L Z |S# Z gs(TQU’V'TQz)’

[@1]€Qa, /To(p) |FO(p)Q1| [Q2]€Qa, /SL2(Z) L2(Z)Q2| yESL2(Z)
(2.10)

2 2
I = > T > ST (Z)an] > 9s(ran 7 Ta),

r
[Qllegdl,p/mm' o(P)al (Q2]€Quy /SLa(Z) 2Z)eal | Sz
(2.11)

and similarly,
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2 2
I3 = Z —_— Z m Z gs(’Y'TQUTQz)‘

[Q2]€Qa4,,p/To(p) |FO(p)Q2| [Q1]€Qa, /SL2(Z) ~ESL2(Z)
(2.12)
Then for I and I3, by the isomorphism [10] Qg .3, /T0(p) = Qq,/SL2(Z) for some fixed
Bi € Z/2pZ such that —d; = 32 (mod 4p) if any, and the simple relation

anp,ﬁz‘ - anpﬁﬁi if Xd; (p) =1,
Qdup = Qdi7p7ﬁi if Xd; (p) =0,

one can further deduce from (2.11) and (2.12) that

Iy = (14 xa,(p))

2 2
X Z SL—Z Z |8147 Z gS(TQUW'TQz)

7
[Ql]ele/SLz(Z)| 2( )Q1|[Q2]€Qd2/SL2(Z) 2Z)eal | iz

4
= (1+Xd1 (p)) Z Z |SL (Z) HSL (Z) ‘Gl,S(TQ17TQ2)?
(Q1]€Qa, /SLa(Z) [Q2]€Qu, /SLa(2) |~ 2V QulIPE2LE/ Q2

(2.13)

and

Iz = (1+ xa,(p))

2 2
N POl o P ) @il 2, O 707

[Q2]€Qa, /SL2 [Q1]€Qa, /SL2(Z) L2(Z)Q1| YE€SL2(Z)

4
SOtxe®) 2 2 L@ P, e )
[Q1]€Qua, /SL2(Z) [Q2]€Qa, /SL2(Z)

(2.14)

So to obtain the desired identity, it remains to prove that

4
’[1 = (p + 1) Z Z ‘SL (Z) ||SL (Z) |Gl7S(TQ17TQ2)'
(@11€Qu, /SLa(Z) [Q2]€Quy /SLa(2) |~ 2V QuIIP 2L/

By (2.10) it makes sense of writing the sum over Qg /T'o(p) in terms of SLo(Z)-
equivalence classes, that is,

2 2
L = Z T Z m Z 9s(7Q1,7 " 7Q.)

[Q1]€Qa, /To(p) |FO(p)Q1 | [Q2]€Qa, /SL2(Z) YESL2(Z)
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ISL2(Z)q
ITo(p)o

| 2
‘SLQ(Z)Ql ‘

= 2 2

[Q1]1€Qa, /SL2(Z) [Q1]1€Q4, /To(p)
[Q1]=[Q1] (mod T'o(p))

/
1

2
X QT 7N | S 19 ! 2/
2 ) 1512(Z)q.| 2. (707 7e.)

[Q2]€Qa, /SL2 ¥€SL2(Z)

ISL2(Z) |

To@ar is just the ramification index of the morphism
1

Then it is not hard to see that
Lo(p)\ (HUQU {ico}) — SLa(Z)\ (HU QU {ico})

at the point 7o, over 7q,, which is of degree p + 1, and thus,

>

[Q11€Qa, /To(p)
[Q1]=[@1] (mod To(p))

SLa(Z) g
Sla@al
To(pas)

Therefore, one finds that

4
Li=(p+1) > > G1,5(7Q1,7Q2)-
[QI]EQJI/SLZ(Z) [QZ]EQL{Q /SLz(Z) |SL2(Z)Q1|ISL2(Z)Q2‘

Finally, the desired identity (2.8) follows from the last identity and (2.9), (2.13)
and (2.14). O

We are now in a position to state a formula for (2.5) that is analogous to those given
in Lemma 2.2.

Lemma 2.4. Let the notation below be defined as before. Then one has that

lim { > > Gp,s(70:,7q,)

[Q1]1€Qa; (p)/To(p) [Q2]€Qa, (P)/To(p)

+M(@—1—MMM—X@@»

L (L4 sen(xa, (p) + Xy () = D) + xay (P)) (A + X, (p)))
2(p+1)

Cdl (8)
¢(2s)

x <hd228df

= Z e1,0logl

¢ prime

+ ha,27%d3 idé(j)) — ha, ha, d(5) — ha, ha, 76T> }
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N (1 +sgn(xa, (p) + Xdo (P) — 1)1 + xa, (p))(1 + Xa, (p))3ha, ha, (p — 1)
2(p+1)2

logp

where

d1d2 — .732
ee=0p-1-xa(p) = xa:(p)) > Fiu —1 (2.15)
$2<d1d2

didy — x?
+C(p,didy) Y Fig (%)

r2<d1dso

with C(p,dy, dz2) defined as in Theorem 1.5.
Proof. This follows immediately from Lemmas 2.2 and 2.3. O
2.3. Component (2.6)

The treatment of the component (2.6) is similar to that of (2.5), and we start with
the following analogous interrelation.

Lemma 2.5. Let the notation below be defined as before. Then one has that

Z Z GILS(TQNw:D ’ TQ2)

[Q1]1€Qa4; (P)/To(p) [Q2]€Qa4, (P)/To(p)

2
= g E B e 2.16
|SL2(Z)Q1| 17S(TQ1’TQ2) ( )
[Q1]€Qa, /SL2(Z) [Q2]€Qp2d2 /SL2(Z)
SRR D ) : Cre(7170)
ISL2(Z) @, |[[SL2(Z)q, |

[Q1]€Qq, /SL2(Z) [Q2]€Qa, /SL2(Z)

+ Z Z . |GP,S(TQ177—Q2)'

T Tr
[Q1]€Qa, »/To(p) [@2]€Cu, »/To(p) | O(p)QlH 0(p)Q2

Proof. Using the fact that for p a prime Qg, (p)/I'o(p) has no elliptic points, i.e., [o(p)g =
{1} for any Q € Qy,, the decomposition

le = le (p) U th:ﬂ?

and the definition of Gy, (21, 22) one can first rewrite that

Z Z GZLS(TQMU}P ’ TQ2)

[@1]€Qa, (P)/To(p) [Q2]€ R4, (P)/To(p)

= Z Z Z gS(TQlarY'wP'TQQ:)

[Q1]€Qa; (p)/To(p) [Q2]€Qa4, (p)/To(p) YETo(p)
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-y =2 ¥ S 0a(rau 7wy 70y)

r
[@1]1€Qa, /To(p) Top)a| [Q2]€Qa, (P)/To(p) ¥ET0(p)
2
- Z Z Z 9s(TQu: 7 Wp - Q)
‘FO (p)Ql |
[Q1]1€Qu4; ,p/To(p) [Q2]€Qa, (p)/To(p) vET o (p)
=1 — I, (2.17)
where I; denote two of the triple sums on the right hand side, respectively.

For Iy, note that w, - 7, is just a root of Q2 - 1,, where w, = ,/pwy, so one can
further rewrite the inner double sum and switch the resulting outer double sum to get

I, = Z Z % Z gs(V'TQNTQz)v (2.18)

T
[Q2]€Qa, (p)wp /To(p) [Ql]Gle/FO(P)l O(p)Ql v€To(p)

where the action of v being shifted to the first argument in the first triple sum follows from
the diagonal-SLs (R )-invariance of gs(z1, 22). Now by the isomorphism Qg, - w,/To(p) =
Qp24,/SL2(Z) given by the map

(aX? +bXY +cY?) - 1b, — aX? + bpXY + p*cY?,

where w, = ,/pw,, and the arguments used in the proof of Lemma 2.3, one can deduce
from (2.18) that

h= Z Z )m Z 9s(v - 19,5 7Q,). (2.19)

[Q2]€Q,2,,/SL2(Z) [Q1]€Qa, /SL2(Z ~ESL2(Z)

For I, by the diagonal-SLy(R)-invariance of gs(z1,22) and the fact that w, is an
involution normalizing T'y(p), one can rewrite it as

2
I = Z F— Z Z gS(Tle’Y'TQ2)'
oo o TEobla]
1]€Qa,; ,p Wp/To(p) [Q2]€Qa, (p)/To(p) YET0(P)
Invoking the isomorphism Qg, , - Wp/To(p) = Qa, p/To(p), one further obtains
2
I, = Z ™ N Z Z gs(TQl”Y'TQ’z)'

r
[Q1]1€Qa, ,p/To(p) | 0(?)@1‘ [Q2]€Qa, (P)/To(p) vET o (p)

Then switching the order of the outer double sum in the first triple sum and using again
the decomposition Qq, = Qq,(p) U Qa, p lead to that

b= Y e Y o X alrenyre) (220

T T
[@11€Q4, »/To(p) o(P)e| [Qg]egdz/rf)(p)' o(P): ~€To(p)
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2

2
- Z TSNl Z m Z 95(TQ1,7 " 7Q,)-

I T
[@1]€Qay,p/To(p) Co(p)e:| [Q2]€Qay,p/To(p) vE€To(p)
Now by the isomorphism Qg, - @, /T (p) = Qp24,/SL2(Z) given by the map
(aX? +bXY +cY?) -1, — aX? + bpXY + p*cY?,

where w, = ,/pw,, and the arguments used in the proof of Lemma 2.3, one deduces
from (2.20) that

2 2
12:(”“1@”( 2 SL@ol. 2= BLi@al]

[@1]€Qa, /SL2(Z) [@2]€Qua, /SL2(Z)

Xy gs(TQl,V'TQz))

~€ESLy(Z)

- Z L Z % Z gS(Tle’Y'TQ'z)

T T
@uleoma/Pom) TOPI] 0 1c o iry TolPleal | 0

4

= (1 + Xd, (p)) Z Z Gl,S(TQUTQ2)
(Q11€Qa, /SLa(Z) [Q2]€Qu, /SLa(Z) |SL2(Z)Q1||SL2(Z)Q2‘
(2.21)

4
) |F0(p)Q1 | |F0(p)Q2

| GILS (TQI ) TQz)'
[Q1]1€Qa4; .p/To(p) [Q2]€Qdy,p/To(p

Finally, the desired identity (2.16) follows from (2.17), (2.19) and (2.21). O

The following lemma is an extension of Lemma 2.2 due to Lauter and Viray [17, Cor.
1.6], and will be useful for evaluating the first component on the right hand side of (2.16).

Lemma 2.6 (Lauter and Viray). Let the notation below be defined as before. Then for p

prime, one has that

2
—————log|j(10,) — 7(10,)|?
[Q1]€Qa, /SL2(Z) [Q2]€Q, 2,4, /SL2(Z)
= Z vglog, (2.22)
¢ prime

where

Fpo (Bh%=2)  ifep,
=)

*didy—a® .
22<p2dids Q‘p,p,Z ((P 142 ) Zfé =p
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whose summands are defined as in Theorem 1.5.

Now recall by Lemma 2.1 that

g li(e1) = i) = limy { Gr(e1,2) + 4 (EaCeno) 4 BaCenno) = o) = 2 ) .

™

and thus, Lauter and Viary’s formula (2.22) gives rise to the evaluation of

) 2
EI> 2 oy Bl ) .

[Q1]€Qa, /SL2(Z) [Q2]€Q 2,4, /SL2

+4m (hdz(p) Z %E1(7Q1’8> + ha, Z El(TQz"S)

[Q1]€Qu, /SL2(Z) SLa(Z)a,| [Q2]€Q,2,4, /SL2(Z)
6
— ha, ha, (p)¢(5) — ha, ha, (p); )

where the first component of the limit is just the first term on the right hand side
of (2.16). We next rewrite the average values of Eisenstein series F1(z,s) in the limit in
terms of Dedekind zeta function and etc. The first average is given by the well known
formula

2
SL2(Z) |

Cdl (8)
¢(25)°

Ei(rq,,s) =27"d}
[Q1]€Qa, /SL2(Z)

The second average over Q,24,/SL2(Z) is given as follows.

Lemma 2.7. Let the notation below be defined as before. Then one has that

> Ei(rg,8) = (1= p*)(0° = xas (1)) + (0 — Xxa> (p))) 27°d ng(22(s)) ,
[Q1€Q, 2., /SLa(Z) s
(2.24)

Proof. First note that the isomorphism Q,24,/SL2(Z) = Qq,(p)/To(p) via
aX? +pXY + p?Y? = aX? + bXY +cY?

yields that

Z Ei(z,8) = Z Ei(pz, s).

Q,24,/SL2(Z) Qa, ()/To(p)

Using the relation above and the following identity [10]
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1— —2s
Ei(pz,s) = (])%)Ep(z, s)+p °Ei(z,s),

one can deduce that

Z El(Tst)
(Rl€Q2,,/S12(Z)
= Z El(pTst)

[Q]€Qa, (p)/To(p)

1 _p72s .
- T s Z EP(TQaS) +p Z EI(Tst)

P Q1€ Qay (2)/To () [Q1€Qay (7)/To(p)
1— p—2s .
=T Z Ey(rq,s) | +p Z Ei(rq,s)
Q1€ Qay ()/To(p) Q1€ Qa3 /To(p)

-p° > Er(7q,s)

[Ql€Qady,p/To(p)

1— p—25 e
=T > Ey(1q.s) | +p "alds, p) > Ey(1q,s)
[QI€Qa, (p)/To(p) [Ql€Qq, /SL2(Z)
— (1+Xa (p))p~* > Ei(rg.9)
[Q€Qa, /SL2(Z)
1— p—ZS
= T Z Ep(TQ7 S)
[Q1€Qua, (p)/To(p)
+p_s (a(d27p) _Xdz(p)) Z El(TQas) 9

[Ql€Qa, /SL2(Z)

where a(ds, p) is defined by

P+3+23Xd2 (p) if —dy = -3,
a(dg,p) = { B2y _g, g (2.25)
p+1 otherwise

coming from taking elliptic points into account. The desired formula follows from the
last equality above, the fact [22] that
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(1—p~*) > Ep(rq,s) | =1 —p )1 = xa:(p)p~*)27"d3
[Q1€Qa, (1) /To(p)

and

w(da) g 2 Cay(s
[Q1€Qa, /SL2(Z)

where w(ds) denotes the number of units of Q(v/—d3) and the simple relation

w(d)

(a(dz2,p) =1 = xa:(P) =5~ =P~ Xax(p)- O

Using Lemma 2.7, one can rewrite (2.23) explicitly, and consequently, obtains the
following formula.

Corollary 2.8. Let the notation below be defined as before. Then one has that

ll_)l’ri { Z Z %Gl,S(TQUTQz)

Z
[QI]EQJI/SLQ(Z) [QQ]EQdQ/SLz(Z) |S 2( )Ql

a4
+ha, (1= p7)(0° = Xao (0) + 175 (p — xax (p))) 213 52(52)
— ha, hay (P)$(8) — ha, ha, () g)
= Z velogt, (2.26)

£ prime

where vy is defined as in Lemma 2.0.
Proof. This follows from Lemmas 2.1, 2.6 and 2.7. O
We now come to the main result of this subsection.

Lemma 2.9. Let the notation be defined as before. Then one has that

ilgi { o Z Z Gps(TQus Wp - Q)
Q1

€Qu4, (p)/To(p) [Q2]€Qa, (p)/To(p)

Cdl (S)
¢(2s)

+ A7 (hdz (p)27sd1%
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+ha, (L=p*)(0° = X (0) + p~°(p — Xz (p))) 275 22

— hd, ha, (p)¢(s) — ha, ha, (Mg)

—4r ((1 + x4, () — (1 + sgn(xa, (P) + Xd, (pg(pi)igl + X, (P)) (1 + X, (p)))

s s 6
X (thQSdf ay (5) + hg,27°d3 aa 5) _ ha,ha,(s) — ha, ha, ﬂ) }

¢(2s) ¢(2s)
= Z €a,elogl

£ prime
n (1 +sgn(xa, (p) + Xa,(p) = 1))(1 + xa, (p)) (1 + Xa,(9))3(p — 1)ha, ha, log p.
2(p+1)
where
d1d2
er=—(+xa(®) | D, F p (2.27)
r2<didso
. (1+sgn(xa, (p) + xa,(p) — 1))(1 + xa, (p)) (1 + Xa,())(2 = Xa, (P))(2 — X4, (P))
4
X Z F1 Vi (d1d2 )
r2<dido
Fpe (W) if £ # p,
+

2 2 .
22 <p2d;ds Q[p (M) Zfﬁ =D

4p

Proof. This follows from Lemmas 2.2 and 2.5, and Corollary 2.8. 0O
2.4. Component (2.7)

In this subsection, we compute the component (2.7). The treatment is similar to that
given in Lemma 2.7.

Lemma 2.10. Let the notation below be defined as before. Then one has that

S El(rgs) = (p%p— i () + 22

1 —S
[Q1€Qu, (1)/To(p) TP
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Proof. Using the relation [10]
E; (Z7 S) = p_SEl(Z, 3) + (1 - p_S)EP(Zv S)v

one can show that

E(rq,s) = Z Er(7q,s) — Z Er(7q, )
[Q1€Qa; (P)/To(p) [Q1€Qa4, /To(p) [Ql€Qa;,p/To(p)

= a(d;,p) > Ey(1q, s)

[Ql€Qu, /SL2(Z)

_(1+Xdi(p)) Z El(TQ7s)
[Q€Qa,; /SL2(Z)

= (Ol(d“p) -1- Xd; (p)) 2 i C(ZS) )

where a(d;, p) is defined as in (2.25). The desired formula follows from the simple relation

w(d;)
2

(Oé(d“p) -1- Xd; (p)) =P~ Xd; (p) O

2.5. A limit

The verification of the following lemma is straightforward, and follows from routine
computations, the famous Kronecker limit formula

—5 %Cd(s) _ % 1
2 e T T o T oW

as well as the class number relation (see, e.g., [22])

ha,(p) = (p — Xd,(P)) a,
for p prime. As such, we omit the details.

Lemma 2.11. Let the notation be defined as before. Then one has that

4 lim { — ((p —1—xa,(p) — Xd» (D))

L (L4 senCxa, (p) + X (p) = D) + xay (P)) (A + X (p))>
2(p+1)
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—s %Cdl(s) —s %Cdz(s) 6
X <hd22 dj C(29) + hq,27°d3 C(29) _hdlhd2¢(s)_hd1hd2;>

- (hdz (p)2_§d1% Ccd(l2(;)) + hd1 ((1 - p—s)(ps — Xdz (p))

+ p_s(p — Xda (p)))2_sd2% i-d(z(j)) - hd1 hdz (p)(b(s) - hdl hdz (p)g>

N ((1 e (p)) — s () + Xa, (pQ)(;i)igl +Xa, (1) (1 + Xa, (p))>
Ca, (8)
¢(2s)

x (thQSdlg b hg2-sdb S5 g (s) = hasha, Q)
™

¢(2s)

S

1—2s (hdz (p) (Ps(p — Xa, () + P

1tp>s (1= Xa, (p)p5)> o—s g3 S (5)

' ¢(2s)
(1 = Xds (p)p_s)> 27%d3 Ccdé(j))

] o _2s41
— ha, (p)ha, (p) (pHS 11_ ;?_gs +p° 11 _pp_; ) ¢(3)> }
(1 +sgn(xa, (p) + Xao () — 1)) + xay () (1 + X4, (p))3(p — 1)
(p+1)?

S

+ ha, (p) (p““(p — Xd» (P)) + i Ii;

fia, hay logp

2.6. Proof of Theorem 1.3

Relying on the preliminaries given in the preceding subsections, we are now in the
position of

Proof of Theorem 1.3. We start with (2.4),

> > log |j;} (mq,) — j; (7q.)I?

[R1]1€Q4, (P)/To(p) [Q2]€ R4, (P)/To(p)

= lim
s—1

{ GP,S(TQNTQz)
[Q1]€Qa, (p)/To(p) [Q2]€Qa, (P)/To(p)

+ Y Y. Gralronwp-mq,)
(@€, (7)/To(p) [@21€Q, (1)/To ()

- 1 4—7728 (h’dz (p) Z E;(TQI’ S) + hd1 (p) Z E;(TQw S)

[Q1]1€Qa4, (p)/To(p) [Q2]€Qa, (p)/To(p)

. 1— p—l . 1— p—23+1
_ 1-2s s
ha, (p)ha, () (p = i o(s) | ¢-
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By Lemma 2.10, one can accordingly rewrite the sums of Eisenstein series and get

> > log |, (r0,) — jif (1q,) 2

[Q1]€Qa4, (p)/To(p) [Q2]€Qu4, (P)/To(p)

= lim { Z Z Gp,s(7Q1,7Qs)

s—1
[Q1]€Q4, (p)/To(p) [R2]€Qa, (P)/To(p)

+ Z Z GP,S (TQI , Wp - TQz)

[Q1]1€Qa4, (p)/To(p) [Q2]€Qua, (p)/To(p)

-1 4j28 <hd2 () (p‘s(p —Xa: (P)) + 1 ;z: (1 =X (p)p_s)) 2di é;1(12(‘:))
+ ha, (p) (p‘s(p — Xa,(p)) + 1 J_rii (1 = xa, (p>p_s)> 27d; ng(zz(j))
— ha, (p)ha, (p) (pl‘%% +P—£%> ¢(3)> }

Then according to Lemmas 2.4, 2.9 and 2.11, one can further rewrite this as a sum of

three convergent limits by some simple manipulations to get

> S logli (rq) —if (rq.)?

[Q1]1€Qa, (P)/To(p) [Q2]€Qa, (P)/To(p)

= lim { Z Z Gp,s (TQ1 ) TQZ)
(@]

s—1
€Qa, (P)/To(p) [Q2]€Q4, (P)/To(p)

+ 47r<(p —1—xa,(P) — Xd>(P))

n (1 +sgn(xd, (p) + xa, (P) = D)L+ xa, (p)) (1 + Xa, (p))>

2(p+1)
s s 6
X (thQSdf %1(1—2(5)) + ha,27°d3 %1(2—2(5)) — ha,ha,¢(s) — ha, ha, ;) }

+ lim { Z Z Gp.s(TQy, Wp - TQ,)
[Q1]

s—1
€Qa, (p)/To(p) [Q2]1€Qa, (P)/To(p)

Ca, (8)
¢(2s)

+ 4 (h@ (p)2~*d;

+ha (1=p7) 0" = xaa () + 7 (0 = xaa(0) 2705 5
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— ha, ha, (p)¢(5> — ha, ha, (p)g>

~4n ((1 t v (o)) — 3800 () X () = D)L+ xay () (1 + s () )

2(p+1)

X (hdﬁsdf a, (9) + hd1275d2% SAC ha, ha,d(s) — hdlhrbg) }

¢(2s) ¢(2s)

+ ll—Ig. { - 47(((2? -1- Xdy (p) - Xd2(p))

n (1 +sgn(xa, (p) + xda,(p) — 1)

)+ xa, () (1 + X (p))>
2(p+1)

« (hd22—sd1; <d1 (8) + hd1 —sd2 C 2(8) _ hdlhd2¢(5) _ hdlhd2§>
™

¢(2s) ¢(29)
—e 15 Ca, (8)
—4r (hd2 (p)27°d? Cd(QS)
+ hay (1= ™) 0" = Xas(0) + 27" (0 = X2 () 273 C<d(22(5))

- hdl hd2 (p)¢(5) - hd1 hdz (p)S_)

+ 4m <(1 s (p)) — 5800 () + Xay (p) = D)L + Xay () (L + X (p))>

2(p+1)

(h 9 sdz id(( )) + ha, —5d2 id(z( )) — hdlhd2¢(s) — hdlhd2§>

-1 477728 <hd2 (p) Z E;(1q,,8) + ha, (p) Z E}(7g,.5)

[Q1]€Qa, (p)/To(p) [Q2]€Qa, (p)/To(p)
_ 1— pfl B 1— p72s+1
1-2s s
a0 ) (1 1t ) 6o )

Evaluating three of these limits using Lemma 2.4, 2.9 and 2.11, one obtains that

> > log |3, (7q.) = 4 (T@.)P =2 Y erlogd,

[Q1]€Qa, (p)/To(p) [Q2]€Qu4, (p)/To(p) £ prime

where ¢, = % defined via (2.15) and (2.27). Dividing both sides by 2 yields the
desired formula. O
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2.7. Proof of Corollary 1.8

We close the current section with the proof of Corollary 1.8, which validates the first
part of Conjecture 1.1.

Proof of Corollary 1.8. By Theorem 1.3 and the definition of Fj ¢(m), one sees that any

.2
(), Hy, hdme

dz2,p or

prime factor £ of result (H +

dp (m)) must divide the positive integers

2 2 2
pdl# for some x, and thus one must have that £ < %. O
3. Proof of Theorem 1.9

This section is devoted to proving Theorem 1.9, more general, Theorem 3.11. The
idea of the proof is paralleled to the one used in [21, Sec. 5-8] for the case of T'y(p)
based on the notion of Borcherds lifts [2,3] (see, also, [15]) and Schofer’s small CM value
formula [19]. More specifically, by the definition (1.1) of H(Zp(a:) and the isomorphism
Q4(p)/To(p) = Cla(p), one can first tell that

log

disc (ij(x))‘ = Z log |j;F (1) — 4, (7er)|
[c],[¢']€Cla(p)
[e]#[c"]
1 . .
-1 o> —2logli) (ran) =G (o), (3.1)
[a]€Cla(p) [b]€Cla(p)
[u]?é[od]

where for an ideal a with a = [A, B+T‘/7_d} , the point 7, = £ +2‘A{Td. Then if the harmonic

function —21log |5, (21) — j, (22)|? defined on Yy(p) x Yo(p) := o(p)\H x Ty (p)\H can be
realized as a Borcherds lift of type (2,2) defined on a certain Shimura variety isomorphic
to Yo(p) X Yo(p), and one can identify the 0-cycle

Z {(TabaTb)}

[b]€Cla(p)

of Yo(p) x Yy (p) with a so-called small CM 0O-cycle of this Shimura variety, one may com-
pute the double sum (3.1) using Schofer’s small CM value formula and local Whittaker
functions. Thanks to Scheithauer [18], the speculation that —2log |j;} (1) — j,7 (22)|* de-
fined on Yy(p) x Yo(p) is a Borcherds lift of type (2,2) is actually valid. In what follows,
we shall first briefly review the notion of Borcherds lifts of type (2,2) and then state
Scheithauer’s result.

3.1. Brief review of Borcherds lifts of type (2,2)

Let (V,Q) = (M2(Q),det) be a rational quadratic space over Q of signature (2,2)
with general spin group
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H = GSpin(V) = {(g1, 92) € GLa x GLg| det(g1) = det(g2)}

acting on V by conjugation (g1, g2) - v = glvggl. In particular, for a Q-algebra A, write
H(A) for GSpin(V ®q A). Denote by D the Grassmannian {[RX + R(=Y)]| det(X) =
det(Y) < 0, (X,Y) = 0} of oriented negative 2-planes of V ®g R. Then extending Q to
V ®@ C, this possesses a complex structure and can be identified with

L/C*={[Z] e P(VreC)|Q(Z)=0,(Z Z) <0}

by [RX + R(-Y')] — [X +4Y]. Moreover, taking ¢ = (8 _01> and ¢/ = ((1) 8), one
can model L/C* by

K= {(Zol 0 ) € (QU+ Q)" ®g C|Im(z1)Im(zs) > o}

—29

Al 0 / Al 0 _ Z1 —Z1%22 X
ICB(O _@)—){E —1-21225-1-(0 _@)}—{(1 o )]EE/(C )

This induces an action of H on K which is just the component-wise fractional linear

7 0 _ (o= 0
(91, 92) (0 —22)_< 0 —92'22)'

Note that K has two connected components which are exactly H x H and H x H, and

via
transformation, i.e.,

we denote by KT the former component.
Now for an open compact subgroup K of H(Ay), it is known that there is an open
variety X of dimension 2 defined over QQ such that

X (C)= HQ)\ (K x H(Af)/K),

where Ay denotes the ring of rational finite adeles. Such a variety is called a Shimura
variety. In particular, letting I' = H(Q)™ N K, where H(Q)" denotes the connected
component of H(Q) with det > 0, by the strong approximation theorem, one indeed has
that

Xg(C)=T\K" =T\ (H x H).
Example 3.1. Take
K ={(g1,92) € HAf)|c1 =¢c2 =0 (mod p)},

a; b

where g; = (c- d-) ,s0 that H(Q)TNK = To(p) xTo(p). Then Xk (C) = Yo(p) x Yo(p).
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Let L be a lattice of V stabilized by K, and let L’ be the dual of L. Then there is
a representation py, of SLy(Z) on C[L'/L] called the Weil representation. For a weakly
holomorphic modular form F(7) = F : H — C[L'/L] of weight 0 for SLy(Z) with respect
to pr, invariant under K as an element in C[L'/L], Borcherds [2] invented a regularized
theta integral lifting ﬁ(r) to an automorphic Green function @ (21, 22; F') defined in the
Shimura variety X (C), which is now known as a Borcherds lift of type (2,2). See also

[20] for a concise summary of Borcherds’ lifting theorem.
In [18], Scheithauer realizes the harmonic function —2log|jf(z1) — j;f (22)* as a

Borcherds lift in Xx(C) = Yy(p) x Yo(p) under the isomorphism given as in Exam-
ple 3.1, which is now summarized in Theorem 3.2.

Theorem 3.2 (Scheithauer). Let p be a prime such that To(p)t is of genus zero. Write
j;f(r) =3 _,a(n)g". Forr=0,...,p—1, define g.() by

g(r)= > alnygr,

n=r (mod p)

so that

gr(T+1) = C;gr('r)a

where ¢, = exp(2mi/p), and

p

Iggxr) i (—) |

Let L = (pZZ %), and define

ﬁ(T) = Z Fjrou,, = Z Z ci(m)q™ | Gusi

0<j,k<p—1 0<jk<p—1 \ meit iz
P

where ¢, = Char(p + L), and

=2 ) 45}

and for (j,k) # (0,0) such that jk =r (mod p),

Fj k(1) = g:(7),

and
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Foo(r) = Gy (1) + go(T) = ¢~ + O(q).
In particular, for (j, k) such that jk = —1 (mod p),

p—1

Fiu(r)=q7» +0 (qT) :
and ¢j 1 (0) = 0 for any j, k. Then one has that
~2log | (21) — i (22)[? = @y, (zl,@;ﬁ)
is a Borcherds lift in X (C) 2 Yy(p) x Yo(p), where
K ={(91,92) € H(Af)[c1 =2 =0 (mod p)}.

As a simple consequence of Theorem 3.2, the double sum (3.1) can be rewritten as

SN 2108l (Tan) — i (1) 2

[a]€Cla(p) [b]€Cla(p)
[a]#[O4]

:_é > Yoo @y (Z1722;ﬁ),

[a]€Cla(p) (21,22)€Z(Ua)
[a]#[04]

1

where Z(U,) is a 0-cycle of Xk (C) identified with

S Aol + > {(Tan. )}, (3.2)

[b]€Cla(p) [6]€Cla(p)

and thus, one indeed has that

. 1 R
log ‘dlSC (ij(x))’ =—3 Z Z D, (zl,zz; F) . (3.3)
[a]€Cla(p) (21,22)€Z(Ua)
[a]#[O4]

This boils down the problem to evaluating the average of the Borcherds lift @, (zl, 295 F )
over Z(Uy).

—

3.2. & (zl, 225 F) over a small CM 0-cycle

In his brilliant work [19, Corollary 3.5] (see, also, [4, Theorem 4.7]), Schofer establishes
the following formula expressing the average value of a Borcherds lift in Xy (C) over a
special 0-dimensional subvariety Z(U) of Xk (C) called a small CM 0-cycle (see, e.g.,
[21, Subsection 6.1] for a definition) in terms of coefficients of Eisenstein series
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E(7,s;¢,1 ZA v, 8, p)q

meQ

for SLo associated to a subspace U of signature (0,2) of the given rational quadratic
space V (see, e.g., [21, Subsection 6.2] for a definition), which is now known as Schofer’s
small CM value formula and can be stated as follows (see, e.g., [21, Subsection 6.2] for
definitions of unexplained notation).

Theorem 3.3 (Schofer). Suppose that

Z Z (m’ W)qm¢n~

neL’ /L me—Q(n)+

For V. =V, @ U, where V, = U*, write Ly and L_ for LNV, and LNU, respectively.
Write x4 for the projections of x € V onto Vi and U, respectively. Then

> Op (21, 22; F)

z€Z(U)
4
:W Z Z —m, )\‘FL Z I{(me(e),)\_ﬁ’L_),
VO( ( )) )\EL' (L++L )m>0 ZE)\++L+
where
lim A (v,0,¢) if m >0,
v—00
K(m, p) = Uli)xgo ©(0) (A4 (v,0,¢) —logv) if m=0,

0 ifm <0,

and Al (v, s, ) is the derivative of A, (v, s, @) with respect to s.

In [21, Subsection 6.3], we realize the 0-cycle Z(U,) defined by (3.2) as a small CM
0-cycle of X (C) in the case of Example 3.1. This together with relevant materials can
be summarized as in the following lemma.

Lemma 3.4. For [a] € Cly(p) — {[O4]} with a = {A, B+T‘/Td} with A > 0 and B2 —2AC =
—d for some integer C > 0, let Uy be the (0,2)-subspace associated with [a] given by
Us = Qf™ + Q™. where

a -1 B a 0o C
f1):<0 A) and fz():<1 0)-

Then the 0-cycle Z(Uy,) is a small CM 0-cycle.
In partzcular, in this case, the orthogonal complement V, of U, is given by V, =
Qela) + Qe , where
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1 0 0 C
e@(o A) and ega)<1 B)'

Applying Schofer’s theorem to the Borcherds lift given in Theorem 3.2 over the small
CM 0-cycle Z(U,) and adopting the relation (3.3), one can deduce the following formula
for the discriminant of H;'p(:n) in terms of k(m, ).

Proposition 3.5. Let the notation be defined as before. Then one has that

log ‘disc (H;:p(x)) ‘

_ = Xi(p))hd (3.4)

X Z l Z Z m(l—det(x),/\_JrL@)
AeL/(

€Cl (a) 4 7 (a) (a)
[0[111]#[521]7) LO+L )y zeny+L§

+ Y 3 3 K G) — det(z), k- + A+ L(“)) ]

1<5,k<p—1 »er/(L® 4 Ap+L®
jk==1 (mod p) EL/(LY"+L) x€pj k,++A++ LY

0 g 7 7
wnere pos = (3 7). 2= (5 7)1 = nve = 2l 4 2?1 =

LNU, =Zf + Zpfs®, and

1 0 0 C
egu)<0 A) and e(2u)<1 B)’

and

a -1 B a 0 C
fl):<0 A) and f2():(1 0)-

By a careful comparison with the case of T'g(p) treated in [21], one shall see that the
present case differs from it by the fact that the associated vector valued modular form
F (7) has nontrivial principal part for some components besides Fy o(7) and no nonzero
constant terms while this is not the case for I'g(p). This ultimately results in a slightly
different set of lattice points involved.

3.83. Lattices associated with a

The use of (3.4) plainly relies on the knowledge of explicit expressions for the quotient
lattice L/(LE,:O +L(_“)) and lattice points of cosets of Lgf). In [21, Subsection 7.1], we give
an explicit formulation for the quotient lattice, and thus, a bit of work shall specify the
lattice points for the present case. These are summarized in the following lemma.
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Lemma 3.6. Let the following notation be defined as before. Then for an ideal class [a] €
Cly(p) with a = {A, B+T\/Td} chosen to be such that ged(A,pd) = 1, one has that

L/ + 1)

Bl ) 2Al (a) (a) 24l (a) (a) (a)
— _ +LY"+ L <l<pd-1
{del pd(p )+ f pd(p ) 2o<si<p ;
and for
Bl (@) 24l (a) Bl (@) 24l (u) (a) (a)
— _ — L/(Ly" + L
)\ >\l d 61 pd (p62 ) d 1 pd ( ) € /( — )’

the corresponding orthogonal decomposition is given by

Bl 2AI1 Bl 2Al
Ay = 76@ - Teé“), A= - sz(a)- (3-5)

Moreover, for pj i, = <2 ](/)p) , one has the orthogonal decomposition

B(Cpk —j) 2A(j — Cpk)
,U/j)k’Jr = pd egu) + pd Géa),

and

B(Cpk — j) (a) " 2ACpk — B?pk + 2Aj (a)
5 -

ijk,* = pd 1 pd

In particular, for p odd prime,

Mgk, — + A — + L(,a)

_ B(Cpk — j + pl — rapdk) ,(a)
= d fi

2A(Cpk — j + pl — rapdk)

a) L(a
pd f2 —

where 14 = (2A)~! (mod p). Note that pt (Cpk —j+pl— (2A)"1pdk) for j not divisible
by p.

Consequently, one obtains a more explicit form of (3.4) as follows.

Proposition 3.7. Let the notation below be defined as before. Then for p odd prime, one
has the following formula for the discriminant of H;jp(x).
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log ‘disc (H;p(x))‘
(P = xa(p)ha

4
pd—1 0o 2 2
d(2AX + pBY)? + (dpY — 2A1)* Bl o
> [Z 2 “(1_ 1Ad Rl
[aleCly(p) L 1=0 X,y=—o0
[a]#[Oa]

2Al (a) (a)
L
d —f +

pd—1 e’} 2 2 2 . 2
dp?(2AX + pBY)? + (dp?Y — 2(pCk — j + pl) A)
NP SERD DD ( LA :
p
1<j,k<p—1 =0 X, Y=—c0
jk=—1 (mod p)

a 2A a
f( VoS L )

where n = Cpk — j + pl — (2A) " tpdk with (2A)~! (mod p), and in particular,

d(2AX + pBY)? + (dpY — 2A1)%  dp?(2AX + pBY)? + (dp2Y — 2(pCk — j + pl) A)?
1A ’ 4A

€ Zzo.

Proof. This follows from Corollary 3.5 and the realization of lattices given as in
Lemma 3.6. O

As remarked at the end of Corollary 3.4, the present case differs from the case of
To(p) by the lattice points related to components with principal part of the form q_%.
This makes the calculations of the corresponding k(m, @) slightly more subtle as one has
to consider p?d-modulo arithmetic rather than just pd-modulo arithmetic as in the case
of Tg(p). In the next subsection, we accordingly refine the formulas for x(m, ¢), so that
they fit our needs.

Prior to closing the current subsection, several observations are noteworthy and shall
facilitate us to state our final formula more concisely.

Remark 3.8. Several observations are made as follows.

(1) For [ divisible by p, one must have

d(2AX 4 pBY)? 4 (dpY — 2Al)?

1= 4Ad

#0,

otherwise, when | = 0, AX? + BX(Yp) + C(Yp)? = 1, and thus [a] = [O4], a
contradiction to the choice of [a], or when [ = pr with 1 < r < d — 1, one deduces
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that d|4A2p?r?, and thus d|r? since (d,2Ap) = 1, which implies that d|r since d is
square-free, a contradiction.
(2) For j not divisible by p, one must have

1 dp*(2AX + pBY)? + (dp*Y — 2(pCk — j + pl) A)?
- # 07
P 4 Adp?

since otherwise, one must have that p|4;2A?, a contradiction to the choices of A and
j-
(3) For j not divisible by p, one can easily see that

2

Al
ujk,+—f<°‘> f°>;—éo (mod L¥).

All three of these facts together with the definition of k(m, ) indicate that the values
of

B 24
p (m Bn o _ 240 +L<°‘>>
pd pd

to be computed in Proposition 3.7 are evaluated at cases except for that of (0,n) with
p1{n or p?|n, and are completely given by

(@ _ 240 @) | p @) gy g (0, B0 p@ _ 247 @) L p@
( f pd + voe m \ " pd h pd *

for 0 < n < p?d — 1.

3.4. Formulas for k(m, )

By definition, to find formulas for & (m7 2 (a) 2A"f(u) + L(u)) as n varies, it suf-
fices to ask for formulas for A,, (v s, o8 (o) -2 o) 4 L(_a)>. To this end, we first

make the following definitions. Let

s+1
A(s;xa) = din—"F F( ) )L(S;Xd)

be the completed Hecke L-function associated with the quadratic character x4 known to
satisfy that

A(1;xq) = ha,

where hy is the weighted class number of Q(1/—d) defined as in Theorem 1.3, and let
L, (s;xa) be the local part of A(s; xq) at the finite place p defined by
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1

B = TG

Also, define the local part of the divisor function of weight —s associated with the
quadratic character x4 at the finite place t by

ord(m)

ooselmxa) = Y. (xa®)t™)’,

Jj=0

and write ¥_;(s,4mmuv) (see [16] for its precise definition) for the Archimedean compo-
nent of A,,(v, s, ), which satisfies that ¥_;(0,4mmv) = 1. Then by [24, Theorem 5.1],
formulas for

2An

Bn
A, (1175, p—df{‘” _ p—df2<°) T L(_“))

can be stated as follows.

Theorem 3.9. For a prime t, write |N|; for the t-adic norm of integer N. Define
Wa(s,m,n) by

(1) for p*|n,

Wa(s, m,n)

1+ (_?m) p* if ord,(m) =0,

ordy (m) , )1
—_s _syordy(m .
_J1i+-0 D> (xa@p?) | = (xalp)p™?) if ordy(m) > 1,
j=2
1+(p-1) Z Xa(p)"p~"* otherwise,
n=2

(2) for pln and p* { n,

Walsmom) = 14 (—Ad (md —; A(n/p)?) ) bt

(3) forptn,

Wa(s,m,n) = 1.



56 D. Ye / Journal of Number Theory 253 (2023) 17-68

Then for n € Z/p*dZ, one has that for m > 0 such that m € —‘27"; +Z,
2An
A(s + 15 xa)Am <U S od D~ i e +L(a))
. 1
=2 H o—st(m, Xa) H (1+ (=d,—mN(a))¢|md|;)Ly(s+1; Xd)];Wa(S, m,n)

ttpd tld
ords(md)>0

X (2mVdmv)*U_q(s,dmmv),

and for m =0,

a 24 a
Ap <v s, —f( )——an +L(_))

Wa(sa O,H),

1 ( ) L(s;xa) Lp(s+1;xq) 1
— 25 n 2d ? p ? _
= 030 = VU T (5+1) Ls+1;xa) Lp(s;xa) p

where 6y, is the Kronecker delta indicator.

As a consequence of Theorem 3.9, one can derive the following “prime-factorization”
formulas for

( Bn 2An
K

m, 22 g0 fa>+L<a>>
pd"t pd

It is worth first noting that as indicated in Remark 3.8, for m = 0, one only has to
consider the number n’s for which p|n and p? { n.

Corollary 3.10. Let the following notation be defined as before. Then one has that

(1) for m >0 such thatme—‘;T”; +2Z,

a 2A a
(m—f” SN L<)— S" Gran(m)logt,

Z prime

where

(a) for €1t pd,

Ge,an( H 00,:(m, Xd) H (1+ (=d, —mN(a)):)

ttlpd tld
ords(md)>0
1 ordg(m) ‘
x ————W4(0,m,n) Z xa(€) j,

p—xa(p) =
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(b) for t|d,
gf,a,n(m) = HO’Qt(m,Xd) H (1 + (_d7 _mN(Cl))t)
tfpd t|d/e
ords(md)>0
X WWG(Q m, n)(_d7 —m)gordg (’rnd)7

(c) and for £ = p,

gZ,a,n(m) = H o—Oﬁt(ma Xd)

ttpd
1 Wi (0,m,n)
X 1+ (—d,—mN(a R
g L+ ( ))t)pfxd(p) logp
ord:(md)>0

(2) and for m =0 and n such that p|n and p*{ n,

B 2A
K (0, p—;fla) — _nféa) + L(a)> E—

1 .
vd ogp

p—xa(p)

Proof. These follow directly from the definition of x(m,¢) and Theorem 3.9. In partic-
ular, for m = 0 and n such that p|n and p? { n,

Wa(s,0,n) =1+ (M) p =1+ xalp)p°,

and thus,
Ao (U,s,% (@) 2;"%“) L(_“))
R e R e )
_ _\/Evédérl“((;si?) L(I’;(j; id;d) L+l -5, o

We are now ready to state and prove the general formula for the prime factorization

of the discriminant of Hzp(x).

Theorem 3.11. Let p > 3 be a prime such that To(p)™ is of genus zero, and let —d be an
odd fundamental discriminant coprime to p. Then

disc (H;fp(x)ﬂz Z ¢ log ¥,

¢ prime

log




58 D. Ye / Journal of Number Theory 253 (2023) 17-68

where
ey = Z €l,a,
[a]eCla(p)
[a]#[O4]
and

pd—1 [e%s)
4Ad — d(2AX + pBY)? — (dpY — 2A1)?
wa=3Y Y G W( ( p4Ad) (dp ) )
=0 X,Y——o00

pd—1

NP SEEDD

1<5,k<p—1 1=0
jk=—1 (mod p)

" Z G 4Adp — dp*(2AX + pBY)? — (dp?Y — 2(pCk — j + pl)A)?
tag 4 Adp? ’
X, Y=—0o0
the ideal class representatives a are chosen to be {A, B+\/—} so that ged(A, pd) = 1, and

the function G qn(m) is defined as follows (all the products involved are over primes
prescribed by the corresponding given assumption).

(i) For m <0, Ggqn(m) = 0. Similarly, as noted in Remark 1.10, this implies ¢, q’s

are all finite sums.
(ii) For m =0 and n such that p|n and p*{ n,

(a) if £ # p, Gean(0) =0,
(b) otherwise, Gy qn(0) = 7‘1

(ii) For m > 0 and

(a) for 1 pd,

ord:(m)
Gi a, n =3 H Z Xd(t)]
t)[fpd =0
ordg(m) .
X H (14 (=d,—mN(a)):) Wa(0,m,n) Z xa(€)? 7,
tld j=1

ord¢(md)>0
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(b) for fld,
1 ord(m) .
Gran(m) = =5 [T 2 xa®’
ttpd j=0
X H (14 (=d,—mN(a));) Wa(0,m,n)(—d, —m)eorde(md),
td/e
ord¢ (md)>0
(c) for £ =p,
1 ords(m) A
Gﬁ,u,n(m) = 75 H Z Xd(t)j
ttpd j=0
w0, m,n)
X g (14 (=d,—mN(a)):) aloT’
ords(md)>0

where Wq(s,m,n) is defined as in Theorem 3.9.
Proof. This follows from Proposition 3.7 and Corollary 3.10. O
Theorem 3.11 implies Corollary 3.12 and as a result, affirms Conjecture 1.1 (2).

Corollary 3.12. Any prime factor of the discriminant of H;:p(x) with p an odd prime and
d coprime to 2p is less than dp.

Proof. By Theorem 3.11, especially the coefficients Gy q,,(m) defined therein, for a prime
¢ dividing disc (H;:p(x)), one can see that either ¢|d, £ = p,

2 _ 2
ng_ d(2AX —|—pBY)4A—|- (dpY — 2Al) ) <4

or

2(2AX + pBY)? y -2 —j+pl)A)?
’ dp_dp( +pBY)* + (dp (pCk — j +pl)A) < dp.
4A
Therefore, any prime factor of disc (Hip(z)) with p odd prime and (d,2p) = 1 is
bounded by dp. O

Remark 3.13. In fact, Corollary 3.12 can directly follow from Corollary 3.5, which holds
for all underlying primes p and any negative fundamental discriminant —d, Lemma 3.6,
as well as local properties of the function k(m, ¢). In addition, by a careful inspection of
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the argument used in [21, Section 7.1], one can see that the first assertion of Lemma 3.6
indeed holds for arbitrary prime p and negative fundamental discriminant —d with A
chosen such that ged(A4, pd) = 1, and as an implication, one can further deduce that the
values of k(m,p) in (3.4) of Corollary 3.5 are all given by evaluations at nonnegative
integer m of the form 1% with N < pd. Furthermore, by Corollary 3.5 and the definition of

k(m, ), one can tell that a prime ¢ divides |disc (Hip(ar)) ’ only if the ¢-part of k(m, ¢)

N—r
pd

which indicates that 0 < N —r < pd, or ¢|pd. Therefore, one can ultimately conclude
that any prime factor of ‘disc (H;fp(ac)>
(2) does hold for arbitrary cases.

vanishes or £|pd, and thus by [16, Section 4], only if ord, ) > 0 for some r < N,

is bounded by pd, and hence, Conjecture 1.1

Data availability
Data will be made available on request.
Appendix A. Magma codes for Theorems 1.3 and 3.11

Chao Qin'
Harbin Engineering University, Harbin 150001, Heilongjiang, People’s Republic of China

Magma code for Theorem 1.3

p:=T7;

dl:=3;

d2:=4;
Z:=IntegerRing ();
L:=1];

for x in [0..d1xd2] do
num:=(d1xd2—x"2)/(4);

if num in Z and num gt O then

for 1 in [1..num] do

if IsPrime(l) and num/l in Z then
Include (~L,1);

end if;

end for;

end if;

end for;

for x in [0..p " 2xd1xd2] do
num:=(p~2xd1xd2—x"2)/(4);

if num in Z and num gt O then

for 1 in [1..num] do

if IsPrime(l) and num/l in Z then
Include (~L,1);

end if;

! E-mail address: qinchao@hrbeu.edu.cn (C. Qin).
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end for;
end if;
end for;

for x in [0..d1xd2] do
num:=(d1xd2—x"2)/(4*p);

if num in Z and num gt O then

for 1 in [1..num] do

if IsPrime(l) and num/l in Z then
Include (~L,1);

end if;

end for;

end if;

end for;

if p notin L then
Include (~L,p);
end if;

L:=Sort (L);

//epsilon

epsilon:= function (N, ell)

if N in Z and (dl/ell) in Z then
e:=2;

elif N notin Z then

e:= 0;

elif (dlsp/ell) notin Z and Valuation(N,ell) mod 2 eq 1 then
e:= 0;

else e:= 1;

end if;

return e;

end function;

/] A
A:=function (m,1,r,ell)

SetQ:=[];
for q in [1..m] do
if IsPrime(q) and m/q in Z and q ne ell then
Include (~SetQ,q);
end if;
end for;

prod:=1;

for q in SetQ do

if q eq 2 then

a:=0;

elif LegendreSymbol(—dl,q) eq 1 and q ne 1 then
a:=14+Valuation (m,q);

elif LegendreSymbol(—dl,q) eq 1 and q eq 1 then
a:=2;

elif LegendreSymbol(—dl,q) eq —1 and q ne 1 then
a:= 1/2%(14(—1)" Valuation (m,q));

elif dl/q in Z and HilbertSymbol(—dl, —Numerator(m), q) eq 1 and g ne

then
a:=2;

elif dl1/q in Z and HilbertSymbol(—dl, —Numerator(m), q) eq 1 and q eq
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and Valuation(m,q) le 2 then
a:=1;
else a:=0;
end if;
prodx:= a;
end for;

return epsilon(m/(ell”r),ell)*prod;
end function;

//sgn

sgn:= function (r)
if r ge 0 then
s:=1;

else s:=-—1;

end if;

return s;

end function;

//F

F:=function (1, ell ,m)
K:=QuadraticField(—dl);
D:=Decomposition (K, ell )[1][1];
e:=RamificationDegree (D);
prod:=0;

for r in [1..Valuation(m,ell)] do
prod+:=A(m,1,r,ell);

end for;

return 1/exprod;
end function;

//e
el:=function(ell)
sumF1:=0;

for x in [—dl1xd2..d1xd2] do
if x72 1t d1%d2 and ((d1xd2—x"2)/4) in Z then
sumF14+:= F(1,ell ,(d1xd2—x"2)/4);
end if;
end for;

alpha:=(p—2—2«LegendreSymbol(—dl,p)—LegendreSymbol(—d2,p))/2+sumF1;

sumF2:=0;

for x in [—dl*d2..d1xd2] do
if x72 It d1xd2 and ((d1xd2—x"2)/(4*p)) in Z then

sumF2+:= F(1,ell ,(d1%d2—x"2)/(4xp));

end if;
end for;

beta:= (1+sgn(LegendreSymbol(—dl,p)+LegendreSymbol(—d2,p)—1))
x(1+LegendreSymbol(—dl,p))*(1+ LegendreSymbol(—d2,p))
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*(2—LegendreSymbol(—dl,p))*(2—LegendreSymbol(—d2,p))/4*sumF2;
sumF3:=0;

for x in [—p~2xd1xd2..p " 2xd1xd2] do

if x72 It p~2+d1xd2 and ((p~2xdlxd2—x"2)/(4)) in Z then
if ell ne p then

sumF3+:= F(p,ell ,(p™2xd1xd2—x"2)/4);

elif ell eq p and (p 2xdlxd2—x"2)/(4*p~2) in Z then
sumF3+:= A((p~2xd1xd2—x"2)/4,p,2,p);

end if;

end if;

end for;

gamma:=1/2+sumF3;
return alpha+betat+gamma;
end function;

//return the result bla

bla:=0;

for ell in L do
if el(ell) ne O then
printf "%o %o ", ell, el(ell);
end if;

end for;

Magma code for Theorem 3.11

p:=T;

d:=3;

A:=31;

B:=11;

C:=1;
Z:=IntegerRing ();

Ylu:=Floor ((Sqrt (4*Axd)+2xA*(pxd—1))/(d*p));
Y1l:=Ceiling(—Sqrt (4+xAxd)/(d*p));

Xlu:=Floor ((Sqrt (4*A)—Bxp*xY1l)/(2*A));
X11:=Ceiling ((—Sqrt (4*A)—Bxp*Y1lu)/(2%A));

Y2u:=Floor ((Sqrt (4*Asxd*p)+2+(p*Cx(p—1)—1+p*(pxd—1))*A)/(d*p*p));

Y2l:=Ceiling ((—Sqrt (4*Axdxp)+2x(p*xC—(p—1))*A) /(d*p*p));
X2u:=Floor ((Sqrt (4«A/p)—p*BxY21)/(d*px*p));

X21:=Ceiling ((—Sqrt (4*A/p)—p*BxY2u)/(2xA));

ell :=3;

K:=QuadraticField(—d);

CLdp:=RingClassGroup (K,p);

if d eq 3 then

h:=1/3;
elif d eq 4 then
h:=1/2;

else h:=ClassNumber (K);
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end if;

//list of ell

L:=[];

for ell in [1..dxp] do
if IsPrime(ell) then
Include(~L, ell);
end if;

end for;

L:=Sort (L);

/W {p,a}(s,mn)
W:=function(p,s,m,n)
if n/p notin Z then
wi=1;
elif n/p in Z and n/p~2 notin Z then
w:= 1+KroneckerSymbol(—Numerator (Asd* (mxd4+A*(n/p)~2))x*
Denominator (Axd* (m«xd+A*(n/p)~2)) ,p)*p (—s);
elif n/p~2 in Z then
if Valuation(m,p) eq 0 then
w:=1+KroneckerSymbol(—Numerator (Axm)* Denominator (Asm) ,p)*p (—s);
elif Valuation(m,p) eq 1 then
w:=1—(KroneckerSymbol(—d,p)*(p~(—s))) " ( Valuation (m,p)+1);
elif Valuation(m,p) ge 2 then
sum:=0;
for j in [2..Valuation(m,p)] do
sum+:=((KroneckerSymbol(—d,p)*(p (—=s)))"j);
end for;
w:= 14(p—1)*sum—(KroneckerSymbol(—d,p)*(p~(—s))) " (Valuation(m,p)+1);
else wi= 1+(p—1)=
((KroneckerSymbol(—d,p)*(p~(—s)))"2/(1 —(KroneckerSymbol(—d,p)*(p~(—=s)))));

end if;

end if;
return w;
end function;

J/W_{p,a}(s,mn)
Wd:=function (p,s,m,n)
if n/p notin Z then
wd:=0;
elif n/p in Z and n/p~2 notin Z then
wd:= —KroneckerSymbol(—Numerator (Axdx*(m+xd+A*(n/p)~2))*
Denominator (Axd* (m«xd+A*(n/p)~2)) ,p)*p (—s)*xLog(p);
elif n/p”™2 in Z then
if Valuation(m,p) eq 0 then
wd:=—KroneckerSymbol(—Numerator (Asm)* Denominator (Asm) ,p)*p~(—s)*
Log(p);
elif Valuation(m,p) eq 1 then
wd:=(KroneckerSymbol(—d,p)” ( Valuation (m,p)+1)*(Valuation (m,p)+1)=
p (= (Valuation (m,p)+1)xs)*Log(p));
elif Valuation(m,p) ge 2 then
sum:=0;
for j in [2..Valuation(m,p)] do
sum+:= KroneckerSymbol(—d,p)  jxj*p (—s*j)*Log(p);
end for;
wd:= —(p—1)*sum +(KroneckerSymbol(—d,p)” (Valuation (m,p)+1)x*
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(Valuation (m,p)+1)*p~(—(Valuation (m,p)+1)xs)*Log(p));

end if;

else wd:= —(p—1)x(—KroneckerSymbol(—d,p) 2*2xp~(—2xs)*Log(p)=*
(1—KroneckerSymbol(—d,p)*p (—s)) —(KroneckerSymbol(—d,p)*p~(—s)) " 2x
KroneckerSymbol(—d,p)*p (—s)*Log(p))/(1—KroneckerSymbol(—d,p)=*

P (—s))"2;
printf "error";
end if;
return wd;
end function;

//sigma_{s ,q} (m, chi)
sigma:=function (s,q,m)

sig:=0;

for j in [0..Valuation(m,q)] do
sig+:=(KroneckerSymbol(—d,q)*q~s) " j;
end for;

return sig;

end function;

//GLANM( ell ;a,n,m);
GLANM:=function (ell ,n,m)
Sigma:=1;
prod:=1;
if pxd/ell notin Z then
for q in [1..ellxpxd] do
if ellxpxd/q notin Z and IsPrime(q) then
Sigmax:=sigma (0,q,m);
end if;
end for;
for q in [1..d] do
if d/q in Z and IsPrime(q) then
if Valuation (mxd,q) gt O then
prodx:=(1+HilbertSymbol(—d/1, —m/1, q));
end if;
end if;
end for;
sum:=0;
for j in [1..Valuation(m,ell)] do
sum+:=KroneckerSymbol(—d, ell )" jx*j;
end for;
prod:=prod+W(p,0 ,m,n)*sum;
elif d/ell in Z then
for q in [1..pxd] do
if pxd/q notin Z and IsPrime(q) then
Sigmax*:=sigma (0,q,m);
end if;
end for;
for q in [1..d/ell] do
if IsPrime(q) then
if d/(ell*q) in Z and Valuation(mxd,q) gt O then
prod*:=(1+HilbertSymbol(—d/1,—m/1,q));
end if;
end if;
end for;

prod:= prod*W(p,0 ,m,n)*HilbertSymbol(—d/1,—m/1,ell)x Valuation (m*d, ell );

elif ell eq p then
for q in [1..pxd] do
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if pxd/q notin Z and IsPrime(q) then
Sigmax*:=sigma (0,q,m);
end if;
end for;
for q in [1..d] do
if d/q in Z and IsPrime(q) then
if Valuation(mxd,q) gt O then
prod*:= (1+HilbertSymbol(—-d/1,-m/1,q));
end if;
end if;

end for;
prod:=prod+«Wd(p,0 ,m,n)/Log(p);

end if;
g:=—1/2xSigmaxprod;

return g;
end function;

//G_{ell ;a,n}(m)

G:=function (ell ,n,m)

g:=0;

if m gt O then
g:=GLANM( ell ,n,m);

elif m eq 0 and n/p in Z and n/p~2 notin Z then
if ell ne p then

g:=0;
elif ell eq p then
g:=h/2;
end if;
elif m 1t O then
g:=0;
end if;

return g;
end function;

power:=function (ell)
suml:=0;
sum2:=0;

for 1 in [0..pxd—1] do

for y in [Y1l..Y1lu] do

for x in [X1l..X1lu] do

if (4%Axd—d*(2+%A+xx4+Bxy*p) 2 —(d*xy*p—2xAx1)"2)/(4+%Axd) ge 0 then
m:=(4xAxd—d * (2% Axx4Bsy*p) 2 —(d*y*p—2+Ax1)"2) /(4*Axd);
suml+:=G(ell ,px]l m);

end if;

end for;

end for;
end for;

for j,k in [1..p—1] do
if jxk mod p eq p—1 then
for 1 in [0..pxd—1] do
for y in [Y2l..Y2u] do
for x in [X21..X2u] do
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if (4%Axdxp — dxp” 2% (2xAxx+p*Bxy) 2 —(d*p 2%y —2*(p*Cxk—j+px1)*A)"2) ge 0
then
m= (4xAxdxp — dxp 2x(2xAxx+p*Bxy)"2
—(d*p 2%y —2x(p*Cxk—j+p*1)*A)"2) /(4xAxdxp~2);
sum2+:=G(ell ,j ,m);
end if;
end for;
end for;
end for;
end if;
end for;

return Floor (suml+sum?2);
end function;

for ell in L do

if power(ell) ne 0 then

printf "%o %o x", ell, power(ell);
end if;

end for;
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